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Free electrons in a random potential
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Absence of Diffusion in Certain Eandom Lattices

. W. ANDERSON
Bell Telephone Laboralories, Werray Hil, Neio Tersey

(Received October 10, 1957)

This paper presents a slmiple model for such processes as spin diffusion or conduction in the “impurity
band.” These processes involve transport In a battice which Is In some sense random, and in them diffusion
is expected to take place via quantum jumps between localized sltes. In this simple model the essential
randomness 8 introduced by reguiring the energy Lo vary randomly from site to site. It is shown that at low
enough denaitles no difusion at all can take place, and the eriteria {or transport to ooccur are given,
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NPt i) d—1: all states are localized

d=3: mobility edge




i P iy d=1: all states are localized v
d=3: mobility edge

Single-band Anderson model d>2) . .
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Main assumption: all states are localized



Beyond Hopping Conductivity:
one-electron transitions between localized

picture states due to inelastic processes
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Beyond

Hopping Conductivity:

one-electron transitions between localized

picture

states due to inelastic processes
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Need energy! T'=0 = o = 0 (any bathl)
Bath? T'—0 = o=7

o(T) xx ["q (inelastic lifetime)
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Phonon-induced B Bath — Phonons
hopping

Mott's variable T = 5 vV electronic DoS
range hopping 4

Coc
where o, = (Vg lgC) dl

i 5 ]/(d+1)_
o(T)ocT exp —( )

model-dependent
prefactor

localization length

# of dimensions

Universal for any bath, provided
that it has a continuous spectrum
of delocalized excitations down to
zero energy and no Coulomb gap!




Can hopping conductivity

?

exist

1. Temperature is finite
2. All one-particle states are localized

3. Electrons interact with each other

4. They are isolated from the outside world

Does DC conductivity )
vahish or it is finite.
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role oif phonons
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Plasmons are
localized as well
as electrons

J

Their spectrum
is locally
discrete




(QQ: Can we replace phonons with
e-h pairs and obtain phonon-less VRH?

A#1: Sure [a person from the street (2005)]:

A#?2: NO wa [L. Fleishman. P.W. Anderson (1980)]
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A#3: Finite T Metal-Insulator Transition
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[Basko, Aleiner, Altshuler (2005)]
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Finite temperature
metal-insulator transition

without changing any '
spatial symmetry ®




-0 Physics: Many-excitations excitations
turn out to be localized in the Fock space

VOLUME 78, NUMBER 14 PHY STCAL REVIEW LETTERS T APRIL 1997

Quasiparticle Lifetime in a Finite System: A Nonperturbative Approach

Boris L. Altshuler,' Yuval Gefen,? Alex Kamenev.? and Leonid S. Levitov?
\NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540
2 Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot, 76100, Israel
I Massachusetts Institute of Technology, 12-112, Cambridee, Massachusetts (2139
{Received 300 August 1996)

The problem of electron-electron hifetime in a quantum dot 15 studied bevond perturbation theors

by mapping onto the problem of localization in the Fock space. Localized and delocalized regimes

are identified. corresponding to quasiparticle spectral peaks of zero and hnite width. respectively.
In the localized regime. quasiparticle states are single-particle-like.  In the delocahzed regime, each
clgenstate 1s a superposition of states with very different quasiparticle content. The transition energy 1s
€. = Alg/ Ing)?, where A is mean level spacing. and g is the dimensionless conductance. Near €,
there 1s a broad critical region not described by the golden rule.  [SO031-9007(97)02805-0]



Anderson localization in the many-body

Fock space
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many-body Fock states —» sites with random energies
e-e interaction —» coupling between sites

metal-insulator transition =-» Anderson transition

o(T) < ["q (inelastic lifetime)



Starting Point: Disorder + Interaction
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We have to take into account that

. A one-electron wave function decays
exponentially as a function of the distance
from Its center.

. There Is level repulsion for the states
localized nearby

. Matrix elements of the interaction decay
(probably as a power law) when differences
between the energies of involved
guasiparticles Is increased.

. These matrix elements have random sign.



Main energy scale

1 Energy spacing

%) r =——g between the states
Vé’ localized nearby
& localization yy one-electron
length density of states

Need a model with small parameters




Main energy scale

1 Energy spacing

%) r =——g between the states
Vé’ localized nearby
& localization yy one-electron
length density of states

Model with small parameters

Interesting physicsat T ? 6,



Weak short-range e-e interaction
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No spins









Interaction only within the same cell;
no diagonal matrix elements



Effective Anderson Model?
Not yet :
What do we know about matrix elements?



Effective Anderson Model?
Not yet :
What do we know about matrix elements?

Random
sSigns







Weakly connected grains?
Different problem?

correct behavior of the tails

of one particle wavefunctions
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Absence of Diffusion in Certain Random Lattices

P. W, ANDERSOH
Bell Taephone Laboratories, Murray [Hill, Neaw fersey
{Received October 10, 1937)

This paper presents a simpde model for such processes as spin difusion or conduction in the “impurity
band.” These processes invalve transport in a lnttice which is in some sende random, and in them diffusion
is expected to take place via quantum jumps between localized sites, In this simple mode] the essential
randomness is introduced by requiring the energy to vary mndemly from site to site. It is shown that at low
encugh densities no diffusion at all can tpke place, and the criterin for transport to eocur are given.
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A selfconsistent theory of localization

R Abou-Chacrat, P W Andersoni$ and D J Thoulesst
t Department of Mathematical Physics, University of Birmimgham, Birmmgham, B15 2TT

1 Cavendish Laboratory, Cambridge, England and Bell La®oratories, Murray Hill, MNew
Jersey, 0974, TISA

Beceived 12 Janwary 1973

Abstract. A new basis has been found fos the theory of localization of electrons i disorderad
swstems, The method 15 based on a selfconsistent solution of the eguation for the self energy
in second order perturbation theory, whose solution may be purely real almost everyvwhere
(Jocalized states} or complex everywhere {nonlocalized states), The equations used are
exact for a Bethe lattice. The selfconsistency condition gives 4 nonlinear integral equation
in two variables for the probability distribution of the real and imaginary parts of the self
energy, A simple approximation for the stability himit of localized states gives Anderson's
‘upper limit approximation’. Exact solution of the stability problem in a special case gives
resulis very close to Anderson’s best estimate. A general and simple formula for the stability
Lirnit is dertved,; this formula should be valid for smooth distribution of site energies away
from the band edge. Results of Monte Carle calculations of the selfconsistency problem
are described which confirm and go bevond the analytical results, The relation of this
theory to the old Anderson theory 15 exarmined, and it 15 con<luded that the present theory
1% similar hut better.



|dea of the calculation:

1. Start with some infinitesimal width 1", (Im part of
the self-energy due to a bath) of each one-electron
eigenstate

2. Consider Im part of the self-energy I in the
presence of tunneling and e-e interaction.

3. Calculate the probability distribution function P(T")
4. Consider the limit: . IM  P(T)=PR,(T)

Q) isthe
volume of
the system



|dea of the calculation:

. Start with some infinitesimal width I", (Im part of
the self-energy due to a bath) of each one-electron

eigenstate

. Consider Im part of the self-energy I in the

presence of tunneling anc

. Calculate the probability o

e-e Interaction.
istribution function P(I")

Consider the limit: . im  P(T") =Ry (T)

Q) isthe
volume of
the system

R (T)

= §(F) - insulator
=0 forT'#0 - metal




\What to calculate? (anderson, 1958)
Mo(e) =Im X 4(e + in) —random quantity

P a(e) A P(I)

insulator

metal
insulator

)

&te g €~ (D)=I) I
behavior for a probability distribution
given realization for a fixed energy

>0 metal

working imlimP(7 #0
criterion: I,!mlglm ( ) =0 Insulator



How to calculate?

non-equilibrium (arbitrary occupations) — Keldysh

e E

-1 _ allow to select the
Parameters: | : M , A=1 most relevant series

......

Self Consistent Born Approximation



Nonlinear integral equation with oefficients

5]

after standard simple tricks: | Decay due to tunneling j
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Stability of the insulating phase:

NO spontaneous generation of broadening

[ o(e) = Ois always a solution

€ — € + 11 linear stability analysis
[ | [
(c €2 112 > mo(e — &) (c—€.)2

o after n Iterations of SCBA equations:

Pn(IM) 7 _(const - A In — an
m -
h r3/2 S5 A

first n — o0
then n — O



About Cayley tree:

Not more than one path
between any two sites!

occupation

.\_.! (£, 3)=%1 nimber

{n(p, j)} - {ﬁ/Qp, j)} E?Lgaetgggtorial =

But # of states gets
factorially reduced ! Cancellation?

Yes, but not at the transition point, where there
IS only one path
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Stability of the metallic phase:

Finite broadening Is self-consistent

_ 1 _<r—<r>>2]
7 V2 (6T2) exp[ 2(0r=)

)
\/(0T2) < () aslongas | T > Xc

(M <« ¢ (levels well resolved)

guantum Kkinetic equation for transitions between
localized states

o(T) x \2T| (model-dependent)
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“Non-ergodic” metal [discussed first in AGKL,97]

5 Ti,

m

T, = =
T 16m2dMANZ TN

Fin

X <Ffm>

OCi 1/<Fin>







L orentz number

/

1+0.3 (5%?;65) , I > \/5CTela

= = <
L 20(THT
o ™) 192G?
T ~1.65..., T'K \/5CTel-

(b) z:l. —————————————

1.5?& -
Sc 1_; 2d

:

0§ 05 i 13



Many-body mobility edge

Large E, = high T: extended states

Interaction — dephasing — cutoff of WL
(good metal)

Fermi Golden Rule
hopping (bad metal)

mobility
transition — edge

Why no activation?
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Many-body mobility edge

Large E, = high T: extended states
Interaction —> dephasing — cutoff of WL
(good metal) No activation:

Fermi Golden Rule
hopping (bad metal)

____________________ mobility

transition —> edge x volume

> 0

volume —» o



Conclusions & Some speculations

Conductivity exactly vanishes at finite
temperature. Finite temperature phase transition
without any apparent symmetry change!

s it an ordinary thermodynamic phase transition
or low temperature phase Is a glass?

We considered weak interaction.
What about strong electron-electron interactions?
Melting of a pined Wigner crystal?

What if we now turn on phonons?

Cascades.

Is conventional hopping conductivity picture ever
correct?



